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ABSTRACT
The core binding factor (CBF) acute myeloid leukemias (AMLs) are a prognostically distinct subgroup that includes patients with the inv(16)

and t(8:21) chromosomal rearrangements. Both of these rearrangements result in the formation of fusion proteins, CBFB–MYH11 and

AML1–ETO, respectively, that involve members of the CBF family of transcription factors. It has been proposed that both of these fusion

proteins function primarily by dominantly repressing normal CBF transcription. However, recent reports have indicted that additional, CBF-

repression independent activities may be equally important during leukemogenesis. This article will focus on these recent advances. J. Cell.

Biochem. 110: 1039–1045, 2010. Published 2010 Wiley-Liss, Inc.y
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T he CBF family is composed of four proteins, the three a

subunits, RUNX1 (AML1, Cbfa2), RUNX2 (Cbfa1), and RUNX3

(Cbfa3) [Ogawa et al., 1993b], and the single b subunit, CBFb

[Wang et al., 1993; Ogawa et al., 1993a]. Disruptions of both CBFb

and RUNX1 are associated with acute myeloid leukemia (AML).

CBFb is involved in the recurrent chromosomal abnormality

inv(16)(p13q22) as well as the less common t(16;16)(p13q22)

translocation, both of which create a fusion between the CBFB gene

on 16q22, and MYH11 on 16p13, the gene that encodes smooth

muscle myosin heavy chain (SMMHC) [Liu et al., 1993]. The

resulting CBFB–MYH11 fusion gene, which encodes the oncopro-

tein CBFb–SMMHC, is found in nearly all patients with French–

American–British (FAB) classification subtype M4 with eosinophilia

(M4Eo) AML [Le Beau et al., 1983; Liu et al., 1995]. RUNX1 is

involved in the t(8;21) translocation that results in a fusion between

RUNX1 and the gene for an E-box family protein, ETO (RUNX1T1,

MTG8), to generate AML1–ETO (RUNX1–RUNX1T1) [Erickson

et al., 1992], which is associated with AML subtype M2 [Rowley,

1973]. Together, the inv(16)(p13q22) and t(8:21) translocations

account for approximately 20–25% of adult AML [Speck and

Gilliland, 2002], making RUNX1 and CBFB the most commonly

targeted genes in human AML. In addition, point mutations in
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RUNX1 have been found in families with a familial platelet disorder

with predisposition to AML [Minelli et al., 2004; Osato, 2004] and in

patients with de novo AML, particularly among those with subtype

M0 [Roumier et al., 2003; Osato, 2004]. Gene expression profiling

also indicates that RUNX1 inactivation is associated with a distinct

M0 subgroup [Silva et al., 2009; Tang et al., 2009].

CBFb and RUNX1 form a heterodimer and together they bind to

the consensus TGTGGT DNA sequence and regulate gene expression.

The RUNX1 protein contains a conserved RUNT homology domain

(RHD), which is responsible for binding DNA and CBFb [Speck and

Gilliland, 2002]. CBFb does not bind DNA directly but stabilizes the

RUNX1–DNA interaction allosterically [Tang et al., 2000] and

protects RUNX1 from ubiquitination and degradation [Huang et al.,

2001]. Both RUNX1 and CBFb are master regulators of definitive

hematopoiesis.

It is thought that both CBFb–SMMHC and AML1–ETO function

by dominantly repressing normal CBFb/RUNX1 heterodimer

activity. Based on this model of dominant repression, the

development of new therapies for CBF leukemias has focused on

disrupting this activity. However, recent work indicates that these

fusion proteins may have gain-of-function activities as well, which

could represent additional targets for future drug discovery. In this
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article we will review the relevant literature establishing the

dominant negative model, as well as highlight recent reports that

challenge this model.

MECHANISMS OF CBFb–SMMHC INDUCED
LEUKEMOGENESIS

Initial studies of Cbfb–MYH11 in mice suggest a dominant repres-

sion model. Mice heterozygous for a knocked-in Cbfb–MYH11

fusion allele (Cbfbþ/MYH11) have a nearly identical phenotype

[Castilla et al., 1996] as mice null for either Cbfb (Cbfb�/�) or Runx1

(Runx1�/�) [Okuda et al., 1996; Sasaki et al., 1996; Wang et al.,

1996a,b; Niki et al., 1997; Okada et al., 1998], which includes

embryonic lethality from massive hemorrhaging and a complete

block in definitive hematopoiesis. Subsequent in vitro studies

indicate that the fusion protein CBFb–SMMHC has a higher affinity

for RUNX1 than endogenous CBFb [Lukasik et al., 2002]. The

N-terminus of the fusion protein retains the RUNX1 dimerization

residues from CBFb, but CBFb–SMMHC also contains a second

RUNX1 high-affinity binding domain (HABD) located at the

proximal end of SMMHC [Lukasik et al., 2002] (Fig. 1A). As a

result, CBFb–SMMHC binds RUNX1 at two sites and can outcompete

CBFb for RUNX1 binding. After preferentially binding RUNX1, it

has been proposed that CBFb–SMMHC represses RUNX1 transacti-

vation by a number of different mechanisms, including sequestra-

tion to the cytoplasm [Adya et al., 1998], and recruitment of

transcriptional repressors by the SMMHC tail [Lutterbach et al.,

1999].

The HABD is predicted to be important for leukemogenesis by

CBFb–SMMHC if dominant repression of RUNX1/CBFb is a

critical step for leukemia development. To test this hypothesis,

we generated knockin mice expressing a mutant Cbfb–MYH11 allele

(Cbfb–MYH11d179–221, expressing CBFb–SMMHCd179–221, Fig. 1B)

in which the HABD (aa 179–221) is deleted [Kamikubo et al., 2010].

As expected, this allele had reduced repression of Cbfb/RUNX1
Fig. 1. Diagrammatic representation of CBFb–SMMHC variants. Schematic of (A) full-l

I CBFb–SMMHC fusion. The CBFb and SMMHC are represented as black and white bo
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functions as evidenced by in vitro studies as well as partial rescue of

the embryonic lethality and definitive hematopoiesis blockage

phenotypes in the Cbfbþ/MYH11
d179–221 embryos. Surprisingly, the

decreased repression of Runx1 did not correlate with reduced or

delayed leukemogenesis. Mice carrying the Cbfb–MYH11d179–221
allele developed leukemia faster than those expressing full-

length Cbfb–MYH11. Furthermore, we found that expression of

Cbfb–MYH11d179–221 induced clonal expansion of human CD34þ

cells with a similar efficiency as full-length Cbfb–MYH11. Taken

together, these results indicate that the HABD in CBFb–SMMHC is

not required for leukemogenesis, implying that dominant repression

of RUNX1 may not be as central to CBFb–SMMHC’s oncogenic

activity as previously believed.

Consistent with these findings is the observation that the so-

called type I CBFB–MYH11 fusion, detected in a small percentage of

inv(16) AML patients, produces a CBFb–SMMHC fusion protein that

lacks the HABD and a significant portion of the C-terminal segment

of CBFb (Fig. 1C) [Dissing et al., 1998; Van der Reijden et al., 2001].

Consequently, the type I fusion protein has very low binding affinity

for RUNX1 [Kamikubo et al., 2010]. The clinical course and the

characteristics of leukemia with the type I fusion are indistinguish-

able from those with longer forms of the fusion protein, further

indicating that dominant repression of RUNX1 is not strictly

required for CBFb–SMMHC to induce leukemia.

A corollary implication of this conclusion is that CBFb–SMMHC

has activities not directly related to RUNX1 repression. In fact, we

have recently shown that, in primitive blood cells, which are mostly

nucleated erythrocytes that arise from the initial wave of embryonic

hematopoiesis, Cbfb–MYH11 blocks differentiation through a

Cbfb/Runx1-repression-independent mechanism [Hyde et al.,

2009]. Primitive blood cells from Cbfbþ/MYH11 embryos have the

histological appearance of more immature precursor cells [Castilla

et al., 1996], as well as continued expression of genes associated

with early progenitor or stem cells, as detected by microarray

analysis [Hyde et al., 2009]. Primitive blood cells from neither

Cbfb�/� nor Runx1�/� embryos showed significant differentiation
ength CBFb–SMMHC, (B) the CBFb–SMMHCd179–221 deletion mutant, and (C) the type

xes, respectively. The high-affinity binding domain (HABD) is indicated.
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defects, indicating that loss of Cbfb/Runx1 activity is not responsible

for the Cbfb–MYH11-induced block in differentiation. Therefore, the

fusion gene must have additional, gain-of-function activities.

Interestingly, many of the genes whose expression was

deregulated in the Cbfbþ/MYH11 embryos via this novel activity

were also found expressed in leukemic cells from mice and humans.

In the case of the mouse leukemias, this gene set was expressed

equally in cells from mice with the full-length Cbfb–MYH11 allele or

the Cbfb–MYH11d179–221 deletion mutant (R.K.H., Y.K., P.P.L.,

unpublished results). This finding implies that the Cbfb/Runx1

repression-independent activity described during primitive hema-

topoiesis is likely involved in Cbfb–MYH11-induced leukemogen-

esis as well.

The mechanism for this novel activity can only be speculated at

present. One hypothesis is that CBFb–SMMHC binds RUNX1 but

does not repress its activity. Rather, perhaps through the recruitment

of co-factors by the SMMHC tail, the fusion protein changes RUNX1

target gene specificity or transactivation ability. A second

possibility is that CBFb–SMMHC has activities that are completely

independent of RUNX1 association, probably mediated by the

SMMHC tail. Little is known about the interactions of the SMMHC

tail in vivo, and it is conceivable that as yet unknown factors interact

with CBFb–SMMHC and contribute to leukemogenesis.

While the above-described observation indicate that CBFb–

SMMHC has important oncogenic activities independent of RUNX1

repression, it should not be concluded that inactivation of the CBFb/

RUNX1 heterodimer does not also contribute to leukemogenesis.

Mice with one Cbfb–MYH11 knockin allele, and one Cbfb null allele

(Cbfb�/MYH11) show accelerated development of leukemia as

compared to Cbfbþ/MYH11 mice [Heilman et al., 2006]. On the other

hand, Cbfb–MYH11 knockin mice with Runx1 mutations developed

leukemia at rates inversely correlating with the severity of Runx1

loss (L.Z., PPL, unpublished results). A possible interpretation of

these findings is that CBFb–SMMHC competes with CBFb for
Fig. 2. Diagrammatic representation of AML1–ETO constructs. Schematic of (A) fu

occurring AML1–ETO9a isoform. The RUNX1 and ETO domains are represented as black a

regions (NHR) are indicated.
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leukemogenesis while partial inhibition of RUNX1 is more

leukemogenic than complete RUNX1 inhibition. Of note PU.1

contribution to leukemogenesis is similarly dose dependent; mice

carrying hypomorphic alleles of Pu.1 with reduced expression (20%

of normal) developed AML rapidly and efficiently, while mice

with homo- or heterozygous deletion of Pu.1 did not develop

leukemia [Rosenbauer et al., 2004]. At present, it is not possible

to weigh the relative importance of the CBF-repression-dependent

and -independent activities. It seems likely that both pathways

contribute substantially to the oncogenic effects of CBFb–SMMHC,

and consequently, could be important targets for the development of

new treatments for inv(16)þ leukemia.

MECHANISMS OF AML1–ETO-INDUCED
LEUKEMOGENESIS

The fusion protein resulting from the t(8;21) translocation, AML1–

ETO, contains the N-terminal region of RUNX1 which includes the

DNA and CBFb binding RHD, joined to nearly the entire ETO protein

(Fig. 2A). ETO is a member of the E-box family of transcriptional

factors and contains four conserved Nervy homology regions (NHR).

The ETO NHR domains have been shown to interact with a number of

transcriptional repressors, including N-CoR, SMRT, Sin3A, and

HDAC1-3 [Peterson and Zhang, 2004]. Based on the structure of the

AML1–ETO protein, it has been proposed that it functions through

repression of RUNX1 target genes. Because the fusion protein retains

the intact RHD, it was originally presumed to share many of the same

target genes as the endogenous RUNX1. However, due to the NHR

domains of the ETO portion, AML1–ETO has been considered a

transcriptional repressor rather than an activator. Consistent with

this model, it has been shown that AML1–ETO represses expression

of the tumor suppressor p14ARF, which is normally activated by

RUNX1 [Linggi et al., 2002]. Through recruitment of chromatin
ll-length AML1–ETO, (B) the AML1–ETO truncation mutant, and (C) the naturally

nd white boxes, respectively. The RUNT homology domain (RHD) and Nervy homology
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remodeling proteins, AML1–ETO has also been shown to repress

expression of the microRNA miR-223, a potential effector of the

AML1–ETO-induced block in differentiation [Fazi et al., 2007]. In

addition, as in the case of CBFb–SMMHC, mice expressing a knockin

allele of AML1–ETO [Yergeau et al., 1997; Okuda et al., 1998] have

the same phenotype of embryonic lethality and block in definitive

hematopoiesis as the Runx1�/� and Cbfb�/� mice [Okuda et al.,

1996; Sasaki et al., 1996; Wang et al., 1996a,b; Niki et al., 1997;

Okada et al., 1998], which is consistent with RUNX1–ETO having

dominant repressor activities.

Despite the attractiveness of this model, there is increasing

evidence that AML–ETO-mediated leukemogenesis is more complex

than simple repression of RUNX1 target genes. AML1–ETO has also

been shown to effect activation of some target genes, such as p21

[Peterson et al., 2007b], BCL-2 [Klampfer et al., 1996], and the

differentiation blocking microRNA, miR-24 [Zaidi et al., 2009], as

well as regulate genes that are not targets of endogenous CBFb/

RUNX1 [Shimada et al., 2000; Gardini et al., 2008]. Consistent with

these findings, it has been demonstrated that AML1–ETO, but not

RUNX1, preferentially binds promoters with duplicated RUNX1

consensus sites [Okumura et al., 2008]. In addition, immunofluor-

escent staining of Kasumi-1 cells, a cell line derived from an AML1–

ETOþ AML patient, shows that RUNX1 and AML1–ETO are

associated with different chromosomal regions [Bakshi et al.,

2008], implying that AML1–ETO regulates different target genes

than RUNX1.

Given these findings, it is perhaps not surprising that multiple

studies have shown that DNA binding by AML1–ETO is required for

leukemogenesis [Kwok et al., 2009; Roudaia et al., 2009; Yan et al.,

2009]. However, whether interaction with CBFb is also required has

yet to be resolved. Using in vitro techniques, Matheny et al. [2007]

identified point mutations in AML1–ETO (Y113A and T161A) that

specifically disrupted CBFb binding without affecting DNA binding.

These point mutants were combined, expressed in mouse bone

marrow (BM) cells, and transplanted into recipient mice. Unlike the

wild-type AML1–ETO, the mutant AML1–ETO (Y113A/T161A) did

not induce leukemia in cooperation with TEL-PDGFbR [Roudaia

et al., 2009], indicating that Cbfb binding is required for

leukemogenesis.

In contrast, Kwok et al. [2009] tested two different point mutants

of AML1–ETO (M106V and A107T) that by immunoprecipitation

and Western blot showed severely reduced CBFb binding. These

constructs, when expressed in mouse hematopoietic cells, retained

serial replating ability, similar to the wild-type AML1–ETO. In

addition, they found that knockdown of Cbfb by short hairpin RNA

(shRNA) did not effect AML–ETO’s serial replating ability. From

these results, the authors concluded that interaction with Cbfb is

dispensable for AML–ETO’s leukemogenic activity.

One possible explanation for these contradictory results is that

serial replating ability may not precisely correlate with leukemo-

genic potential. Cbfb binding may not be required for the former,

but still required for the latter. In addition, it may be that AML–ETO

can function properly with a very minimal amount of Cbfb binding.

The M106V and A107T mutants [Kwok et al., 2009] may weakly

associate with Cbfb, such that it was barely detectable by

immunoprecipitation [Fig. 1D, in Kwok et al., 2009], but would
1042 NEW MECHANISMS OF CBFB–MYH11 AND AML1–ETO AML
be enough to stabilize AML1–ETO’s DNA binding. Follow-up studies

by Park et al. [2009] are consistent with this possibility. Similarly,

shRNA knockdown of Cbfb may not have been complete, and the

remaining Cbfb contributed to the serial replating activity. Further

experimentation will be needed to clarify the role of Cbfb in

leukemia induction by AML1–ETO. Because this interaction has

been proposed as a target for the development of new therapies,

resolution of this issue could have important consequences.

AML1–ETO’s repression of RUNX1 target gene expression has

also been questioned by recent findings indicating that recruitment

of co-repressors by the ETO domain may not be required for

leukemogenesis. Deletion mutants of the ETO co-repressor binding

NHR domains have shown that NHR1, 3, and 4 are dispensable for

leukemogenesis [Kwok et al., 2009; Yan et al., 2009]. In addition, it

has been shown that loss of NHR3 and 4 either in a truncation

mutation (Fig. 2B) [Yan et al., 2004] or in a naturally occurring splice

isoform (AML1–ETO9a) (Fig. 2C) [Yan et al., 2006] results in

accelerated leukemogenesis. These findings indicate that, rather

than contributing to leukemogenesis, NHR3 and 4 actually inhibit

the oncogenic activity of AML–ETO.

These findings raise interesting questions as to the relevance of

the multiple other AML–ETO isoforms expressed in patient samples.

In addition to the AML1–ETO9a isoform described above, nine other

isoforms have been described in patients or cell lines [Peterson et al.,

2007a]. Often, multiple isoforms are found in a single sample. It will

be interesting to determine the relative leukemic potential of the

various isoforms, and if their differential expression has any

correlation with prognosis.

MECHANISTIC HINTS FROM POINT MUTATIONS
IN RUNX1

To date, much of the research on CBF leukemias has centered on the

assumption that RUNX1 directly binds the promoters of target genes

in order to regulate their expression. However, there is increasing

evidence that RUNX1 has DNA-binding-independent activities. In

some instances, RUNX1 may be recruited to the promoters of target

genes through protein–protein interactions with other transcription

factors [Pabst et al., 2001; Wheeler et al., 2002]. Recently,

Cammenga et al. [2007] reported that point mutations in the RHD

of RUNX1 found in patients with AML subtype M0 led to a gain-of-

function activity for the RUNX1 protein. When these RHD mutants,

which are not capable of binding DNA, were expressed in murine BM

cells, they led to an increase in serial replating efficiency and the

accumulation of cells with a blast-like morphology, similar to that

seen with AML1–ETO. Interestingly, it was found that CBFb

interaction was not required for this activity. Although loss of

RUNX1 had similar effects on serial replating as expression of the

RHD mutants, it did not readily lead to immortalization of BM cells,

indicating that the RHD mutants have a gain-of-function activity

through a DNA-binding-independent mechanism. From these

observations, the authors argue that normal hematopoiesis requires

a balance between RUNX1’s DNA-binding-dependent and -

independent activities, and that disruption of this balance leads

to leukemogenesis.
JOURNAL OF CELLULAR BIOCHEMISTRY



This model could potentially apply to both CBFb–SMMHC and

AML1–ETO. In the case of AML1–ETO, it is clear that binding DNA is

required for its leukemic activity [Kwok et al., 2009; Roudaia et al.,

2009; Yan et al., 2009]. However, it is not known if the fusion protein

affects RUNX1’s DNA-binding-independent functions, thus upset-

ting the balance between the two activities. Interestingly, it was

recently shown by chromatin immunoprecipitation that AML1–ETO

is associated with promoters lacking a known RUNX1 binding site,

but enriched for sites of other hematopoiesis-related transcription

factors [Gardini et al., 2008]. This finding is consistent with the

possibility that AML1–ETO can form complexes with other

transcription factors that provide the DNA-binding activity and

target gene specificity.

FINAL THOUGHTS

With the development of imatinib for the treatment of chronic

myeloid leukemia (CML) in patients with the BCR-ABL translocation

[Druker et al., 1996, 2001a,b], much attention has been focused on

the development of drugs that specifically target the fusion proteins

arising from other recurrent chromosomal abnormalities. However,

the development of such drugs depends on a clear understanding of

the molecular mechanisms of these oncogenes. In the case of the CBF

leukemias, recent findings have indicated that the activity of these

fusion proteins is more complex than originally thought. Both

CBFb–SMMHC and AML1–ETO appear to repress transcription of

some CBFb/RUNX1 target genes but also activate transcription of an

alternate set of target genes. The identity of the genes in this

alternate set as well as the co-factors involved in activating their

transcription have yet to be determined. However, this line of

inquiry promises to yield important insights into the oncogenic

mechanism of both fusion proteins, and ultimately, the development

of new therapies for inv(16) and t(8:21) leukemia.
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